A DISRUPTIVE TECHNOLOGY FOR STORAGE CLASS MEMORY
DISCLAIMER

IMPORTANT NOTICE:

This presentation has been prepared by 4DS Memory Limited. (“4DS” or the “Company”) based on information available to it as at the date of this presentation. The information in this presentation is provided in summary form and does not contain all information necessary to make an investment decision.

This presentation does not constitute an offer, invitation, solicitation or recommendation with respect to the purchase or sale of any security in 4DS, nor does it constitute financial product advice or take into account any individual’s investment objectives, taxation situation, financial situation or needs. An investor must not act on the basis of any matter contained in this presentation but must make its own assessment of 4DS and conduct its own investigations. Before making an investment decision, investors should consider the appropriateness of the information having regard to their own objectives, financial situation and needs, and seek legal, taxation and financial advice appropriate to their jurisdiction and circumstances. An investor must not act on the basis of any matter contained in this presentation but must make its own assessment of 4DS and conduct its own investigations. An investor must not act on the basis of any matter contained in this presentation but must make its own assessment of 4DS and conduct its own investigations. An investor must not act on the basis of any matter contained in this presentation but must make its own assessment of 4DS and conduct its own investigations. An investor must not act on the basis of any matter contained in this presentation but must make its own assessment of 4DS and conduct its own investigations.

Although reasonable care has been taken to ensure that the facts stated in this presentation are accurate and that the opinions expressed are fair and reasonable, no representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. To the maximum extent permitted by law, none of 4DS, its officers, directors, employees and agents, nor any other person, accepts any responsibility and liability for the content of this presentation including, without limitation, any liability arising from fault or negligence, for any loss arising from the use of or reliance on any of the information contained in this presentation or otherwise arising in connection with it.

The information presented in this presentation is subject to change without notice and 4DS does not have any responsibility or obligation to inform you of any matter arising or coming to their notice, after the date of this presentation, which may affect any matter referred to in this presentation.

The distribution of this presentation may be restricted by law and you should observe any such restrictions.

Forward looking statements

This presentation contains certain forward looking statements that are based on the Company’s management’s beliefs, assumptions and expectations and on information currently available to management. Such forward looking statements involve known and unknown risks, uncertainties, and other factors which may cause the actual results or performance of 4DS to be materially different from the results or performance expressed or implied by such forward looking statements. Such forward looking statements are based on numerous assumptions regarding the Company’s present and future business strategies and the political and economic environment in which 4DS will operate in the future, which are subject to change without notice. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward looking statements or other forecast.

To the full extent permitted by law, 4DS and its directors, officers, employees, advisers, agents and intermediaries disclaim any obligation or undertaking to release any updates or revisions to information to reflect any change in any of the information contained in this presentation (including, but not limited to, any assumptions or expectations set out in the presentation).
MEMORY / STORAGE OPPORTUNITY SPACE

- Super low power or super fast
- Limited or massive amounts of data
- Retrieve data locally or from the cloud
- Retain results locally or stream into the cloud
- Must not fail in high temperature environment or when moving (automotive)
- Price-sensitive applications (consumer devices)
3 DISTINCT MEMORY / STORAGE CLASSES

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Internet-of-things</th>
<th>Embedded on SOC</th>
<th>High density / High volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Low chip cost</td>
<td>Lower than SRAM</td>
<td>Low bit cost</td>
</tr>
<tr>
<td>Bit capacity</td>
<td>Low</td>
<td>Higher than SRAM</td>
<td>High and higher</td>
</tr>
<tr>
<td>Power</td>
<td>Low chip power</td>
<td>Lower than SRAM</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>Low</td>
<td>Fast</td>
<td>Best = DRAM</td>
</tr>
<tr>
<td>Retention</td>
<td>Medium</td>
<td>High</td>
<td>Best = NAND Flash</td>
</tr>
</tbody>
</table>
4DS FOCUSED ON HIGH DENSITY / HIGH VOLUME

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Internet-of-things</th>
<th>Embedded on SOC</th>
<th>High density / High volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Low chip cost</td>
<td>Lower than SRAM</td>
<td>Low bit cost</td>
</tr>
<tr>
<td>Bit capacity</td>
<td>Low</td>
<td>Higher than SRAM</td>
<td>High and higher</td>
</tr>
<tr>
<td>Power</td>
<td>Low chip power</td>
<td>Lower than SRAM</td>
<td>Best = DRAM</td>
</tr>
<tr>
<td>Speed</td>
<td>Low</td>
<td>Fast</td>
<td>Best = NAND Flash</td>
</tr>
<tr>
<td>Retention</td>
<td>Medium</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
CURRENT HIGH DENSITY / HIGH VOLUME LEADERS

<table>
<thead>
<tr>
<th>Use</th>
<th>Leader</th>
<th>Yearly volume (in gigabytes)</th>
<th>2017 revenue* (by chip makers)</th>
<th>$ per gigabyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Memory</td>
<td>DRAM</td>
<td>11.5 billion</td>
<td>US$ 72.1 billion</td>
<td>US$ 6.27</td>
</tr>
<tr>
<td>Silicon Storage</td>
<td>NAND Flash</td>
<td>175.7 billion</td>
<td>US$ 53.7 billion</td>
<td>US$ 0.30</td>
</tr>
</tbody>
</table>

2017 Source Gartner
HIGH DENSITY / HIGH VOLUME MEMORY / STORAGE

<table>
<thead>
<tr>
<th>Feature</th>
<th>DRAM System Memory</th>
<th>NAND Flash Silicon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Highest 100 times more than HDD</td>
<td>High 10 times more than HDD</td>
</tr>
<tr>
<td>Cycling Endurance</td>
<td>Highest 10^{12} times higher than SSD</td>
<td>Lowest 10^3</td>
</tr>
<tr>
<td>Data Retention</td>
<td>Lowest 0.1 sec</td>
<td>Medium 10^9 times longer than DRAM</td>
</tr>
<tr>
<td>Random Access Read Speed</td>
<td>Fastest</td>
<td>Slow 20 to 200 times slower than DRAM</td>
</tr>
<tr>
<td>Bit Capacity</td>
<td>Lowest (2D only)</td>
<td>High (3D stacking)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Highest</td>
<td>Lowest</td>
</tr>
</tbody>
</table>
“UNIVERSAL MEMORY” MAY NEVER EXIST

<table>
<thead>
<tr>
<th></th>
<th>DRAM System Memory</th>
<th>NAND Flash Silicon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Highest 100 times more than HDD</td>
<td>High 10 times more than HDD</td>
</tr>
<tr>
<td>Cycling Endurance</td>
<td>Highest 10^{12} times higher than SSD</td>
<td>Lowest 10^3</td>
</tr>
<tr>
<td>Data Retention</td>
<td>Lowest 0.1 sec</td>
<td>Medium 10^9 times longer than DRAM</td>
</tr>
<tr>
<td>Random Access Read Speed</td>
<td>Fastest</td>
<td>Slow 20 to 200 times slower than DRAM</td>
</tr>
<tr>
<td>Bit Capacity</td>
<td>Lowest (2D only)</td>
<td>High (3D stacking)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Highest</td>
<td>Lowest</td>
</tr>
</tbody>
</table>
VAST SPACE BETWEEN DRAM MEMORY & NAND FLASH STORAGE

- **DRAM**
 - Endurance: $\times 10^{12}$
 - Retention: <100 ns
 - 9 orders of magnitude

- **NAND Flash**
 - Endurance: $\times 10^{13}$
 - Retention: 10 years
 - 9 orders of magnitude

9 orders of magnitude
STORAGE CLASS MEMORY (SCM)

- **DRAM**: 10^{12} endurance, <100ns retention
- **NAND Flash**: 10^3 endurance, 10 years retention

9 orders of magnitude

Storage Class Memory
4DS AIMING FOR SPACE CLOSE TO DRAM – BIGGEST OPPORTUNITY

Direct Access Read Speed

≈ 50ns

1 to 10µs

<100ns

9 orders of magnitude

10 years

Retention

DRAM

Storage Class Memory

NAND Flash
STORAGE CLASS MEMORY REQUIREMENTS

- Based on well understood physics (like DRAM and NAND Flash)
- Scalable technology over many generations (like DRAM and NAND Flash)
- Tunable technology in the vast space between DRAM and NAND Flash
- Capable of speed as close as possible to DRAM
- Capable of cost/retention as close as possible to NAND Flash
- Current priority is DRAM-like read speed over NAND Flash-like retention
- General consensus is that Storage Class Memory must be area-based ReRAM (non filamentary)
STORAGE CLASS MEMORY REQUIREMENTS

<table>
<thead>
<tr>
<th>4DS</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>• Based on well understood physics (like DRAM and NAND Flash)</td>
</tr>
<tr>
<td>✓</td>
<td>• Scalable technology over many generations (like DRAM and NAND Flash)</td>
</tr>
<tr>
<td>✓</td>
<td>• Tunable technology in the vast space between DRAM and NAND Flash</td>
</tr>
<tr>
<td>✓</td>
<td>• Capable of speed as close as possible to DRAM</td>
</tr>
<tr>
<td>✓</td>
<td>• Capable of cost/retention as close as possible to NAND Flash</td>
</tr>
<tr>
<td>✓</td>
<td>• Current priority is DRAM-like read speed over NAND Flash-like retention</td>
</tr>
<tr>
<td>✓</td>
<td>• General consensus is that Storage Class Memory must be area-based ReRAM (non filamentary)</td>
</tr>
</tbody>
</table>
HIGH DENSITY / HIGH VOLUME SWEET SPOTS

<table>
<thead>
<tr>
<th>Memories</th>
<th>Systems Memory</th>
<th>Silicon Storage</th>
<th>Storage Class Memory (close to DRAM read speed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND Flash</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>MRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filamentary ReRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Change ReRAM</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Interface Switching ReRAM</td>
<td></td>
<td></td>
<td>4DS</td>
</tr>
</tbody>
</table>
STORAGE CLASS MEMORY: A DISRUPTIVE TECHNOLOGY

Opportunity to offer:

- Faster systems
- Consuming less power
- Capable of processing more data
- In a more cost-effective way

Critical for the fastest growing segments: Cloud and Mobile
ABOUT 4DS

+ Founded in 2008
+ Publicly traded on Australian Stock Exchange (ASX Code: 4DS)
 + 964 million shares on issue / 122 million unlisted options / Market Cap fully diluted at A$0.11.5 = US$90 mil*
+ All technology developed in-house
 + All R&D in Silicon Valley
 + 20 US patents granted + several pending
+ JDA with HGST (subsidiary of Western Digital – US$ 20 billion Market Cap) since July 2014
 + Gives us insight into what is really important in a data-centric world

* As of 23rd August 2018
COLLABORATION AGREEMENT

- Jointly develop a transferrable production ready process
 - For state-of-the-art high volume / high density production tools
- Apply this process on imec’s proven megabit memory platform
 - To fabricate a megabit 4DS Interface Switching chip
 - On same wafer size used for high volume production (300mm)
WHY IMEC?

- #1 independent semiconductor research & development institute
 - Collaborates with the who’s who of electronic products & systems
 - Collaborates with the who’s who of high volume / high density memories
 - Has excellent track record in transfer of semiconductor process from “lab” to “fab”
 - Uses same tools as industry for high volume production of high density memories
 - Uses same wafer size (300mm = 12”) as industry uses for volume production
- Long track record in research & development of emerging memories
 - Has a proven megabit memory platform
 - Has used this platform to explore a wide range of emerging memories
CURRENT STATUS

- Scales to geometries needed for high-density and 3D: 40nm
- Endurance yield > 97%
- Read speed comparable to DRAM: *an area-based ReRAM first*
- No need for speed-crippling error correction: *a ReRAM first*
- Endurance between DRAM and NAND Flash
- Retention between DRAM and NAND Flash
- imec wafers from production equipment due late September 2018
BOARD AND MANAGEMENT

Global expertise founding and building high-tech companies.

JIM DORRIAN
Non-Executive Chairman
- Served as CEO of several Silicon Valley companies
- Extensive M&A experience
- Partner at VC firm Crosspoint Venture Partners

Last transaction was the sale of Bill Me Later – a company Jim founded and sold to PayPal for US$1 billion

Dr GUIDO ARNOUT
CEO & Managing Director
- 30+ years in commercialising electronics technology
- Successes include, Power-Escape, CoWare, CrossCheck Technology and Silvar-Liso

HOWARD DIGBY
Non-Executive Director
- Former senior roles at IBM, Adobe, Gartner and the Economist Group
- Non-Executive Director Elsight Ltd and Chairman of Omni Market Ltd
- Advisor to a number of early stage technology companies

Dr SESHUBABU DESU
Chief Technology Officer
- Expert in thin films, semiconductor processing and non-volatile memories
- Professor, Dean and Head of Electrical Engineering at various universities

DAVID McAULIFFE
Executive Director
- Experienced company director
- Involved in numerous capital raisings and in-licensing of technologies
- Founder of several companies in Australia, France and the UK, many of which are now ASX listed

MICHAEL VAN BUSKIRK
Chief Engineering Officer
- Executive roles with a number of leading memory companies in Silicon Valley
- These include, Adesto Technologies Corporation, Innovative Silicon Inc and Spansion Inc.
THANK YOU